C. Blasi, P. P. Rossi

Indagine sulle strutture murarie del tempio cosiddetto di Romolo nel Foro Romano: prove non distruttive con martinetti piatti e analisi numeriche

(memoria presentata alla II Conferenza Internazionale sulle Prove non distruttive, Metodi microanalitici e Indagini ambientali per lo studio e la conservazione delle opere d’arte, Perugia, 17-20 aprile 1988)
Abstract

The temple of Romolo in the Roman Forum constituted by a tambour and a dome in masonry with a diameter of about 15 m.; it shows important signs of structural subsiding.

This report illustrates the experimental tests and mathematical programs carried out till now for knowledge of the mechanical characteristics of materials and of the static situation. In particular the results obtained with the use of flat jacks are reported and the comparison with the first modelling in the field of the linear behaviour of the structure is illustrated.
1 PREMESSA

La costruzione dell’edificio, oggi indicato con il nome di Tempio di Romolo, fu iniziata probabilmente nel 309 d.C. e si inserisce in un insieme unitario di edifici monumentali, lungo la via Sacra, realizzati da Massenzio a celebrazione della propria persona e della propria famiglia. /1/

L’edificio, che prese il nome dal giovane figlio di Massenzio, Romolo, morto appunto nel 309, al quale fu dedicato, era costituito da un tamburo cilindrico di 15 m di diametro, sormontato da una cupola semisferica e da due aule laterali rettangolari, coperte con volte a crocera.

In epoca barocca venne realizzato un piano intermedio interno su quattro pilastri e volticciole e, sopra la cupola, una lanterna. Attualmente, dell’edificio romano e’ rimasto soltanto il tamburo e la cupola, oltre ad alcuni resti della facciata. Le aule laterali sono crollate. La cupola pertanto, soprattutto dopo gli scavi effettuati nel Foro, si trova senza più’ contrasti laterali.
L'edificio presenta numerosi e gravi segni di disseto; soprattutto lesioni con andamento prevalentemente verticale, che iniziano nella parte superiore della cupola e scendono fino a terra e rilevanti fuori piombo delle murature del tamburo.

Nonostante i numerosi interventi di consolidamento, effettuati in più fasi, dal periodo barocco in poi, concretizzatisi nella ricucitura a mattoni delle lesioni, nella realizzazione di archi di controspinta e di rifacimenti di alcune parti deteriorate, la situazione del monumento è oggi certamente preoccupante, per il continuo riaprirsi delle lesioni anche negli intonaci più recenti.

Per tale ragione la Soprintendenza Archeologica, unitamente alla Soprintendenza ai Beni Ambientali e Architettonici, ha promosso una campagna di studi conoscitivi sulla situazione del monumento, finalizzati alla salvaguardia dell’opera.

Per quanto riguarda lo studio della situazione statica dell’edificio romano è stato incaricato il Prof. Andrea Chiarugi dell’Università di Firenze, che ha organizzato e coordinato il programma di indagini strutturali, del quale, nella presente relazione si illustrano i primi risultati.

Il programma, in parte già realizzato e in parte da realizzare, è stato definito con lo scopo di pervenire ad una completa identificazione delle caratteristiche strutturali e degli stati tensionali del momento, mediante indagini non distruttive statiche e dinamiche, corredate da analisi numeriche.

In particolare sono state previste:

- un’indagine degli stati tensionali esistenti nelle murature e delle caratteristiche meccaniche delle stesse mediante l’impiego di martinetti piatti (gia’ effettuata da parte dei tecnici dell’ISMES);
- un’indagine con prove dinamiche con l’impiego di una vibrodi- na per l’identificazione dinamica delle strutture (da effettuare);
- una modellazione numerica agli elementi finiti (in parte gia’ effettuata, con ipotesi di comportamento lineare della struttura, ma in corso di ulteriore definizione, mediante un programma che tenga conto della non resistenza a trazione della muratura).
2 NOTE SULL’IMPIEGO DEI MARTINETTI PIATTI PER LO STUDIO DEGLI STATI TENSIONALI E DELLE DEFORMABILITA’ DI ELEMENTI IN MURATURA

Una approfondita analisi delle caratteristiche meccaniche costituisce premessa indispensabile per la valutazione delle condizioni statiche di una struttura muraria e per la progettazione di interventi di consolidamento. Un approccio basato unicamente sulle prove di laboratorio eseguite sui campioni estratti dalle murature non è sufficiente a determinare in modo affidabile i parametri meccanici necessari per la progettazione. Solo campioni di modeste dimensioni possono essere prelevati dalle strutture murarie e i dati che forniscono non possono essere quindi rappresentativi della muratura nel suo complesso.

Queste notevoli difficoltà hanno consigliato di indirizzare la ricerca verso lo sviluppo e la messa a punto di tecniche di prova di tipo "non distruttivo" da eseguire in sito su campioni indisturbati di muratura di grandi dimensioni. Un importante contributo in questo settore è stato fornito dall’ISMES con la messa a punto di una interessante tecnica di prova basata sull’impiego di speciali martinetti piatti da inserire nella muratura entro corsi di malta.

La tecnica del martinetto piatto può essere applicata a murature in mattoni e in pietra e permette di determinare sia lo stato di sollecitazione esistente nel punto di prova sia le caratteristiche di deformabilità e resistenza della muratura.

La misura dello stato tensionale esistente in un punto della muratura è basata sul rilascio delle tensioni causato da un taglio piano normale alla superficie della parete. Il rilascio delle tensioni provoca una parziale chiusura del taglio che viene misurato mediante un estensimetro rimovibile fra due punti posti in posizione simmetrica rispetto al taglio.

Un sottile martinetto piatto in lamiera di acciaio viene quindi inserito all’interno del taglio e la pressione interna viene gradualmente aumentata fino ad annullare la convergenza in precedenza misurata. In queste condizioni la pressione all’interno del martinetto è uguale alla sollecitazione preesistente nella muratura in direzione normale al piano del taglio, a meno di una costante che tiene conto del rapporto fra la superficie del martinetto e quella del taglio e della rigidezza del bordo di saldatura.
Nel caso di murature in mattoni vengono utilizzati martineti rettangolari di dimensioni (40 x 20 cm) e spessore 10 mm. Martinetti di dimensioni più ridotte vengono impiegati per l’analisi tensionale di elementi strutturali di limitate dimensioni (archi, pulvini, pilastri, volte). In fig. 2.1 sono riportate le diverse fasi di prova con martinetto rettangolare su una muratura in mattoni.

Nelle murature in pietra il taglio viene eseguito mediante disco diamantato e il martinetto piatto assume in questo caso la forma di segmento circolare con corda 33 cm, altezza 12 cm e spessore 4 mm.

La misura della deformabilità viene effettuata mediante l’inserimento di due martinetti piatti paralleli ad una distanza di circa 50 cm (fig. 2.2). Si delimita in tal modo un campione di muratura di apprezzabili dimensioni al quale viene applicato, tramite i martinetti inseriti, uno stato di sollecitazione monoassiale in direzione normale ai corsi di malta. Mediante estensimetro di tipo rimovibile vengono misurate le deformazioni assiali e trasversali sulla faccia libera del campione. Le pressioni vengono applicate con diversi cicli di carico e scarico: ci si limita dapprima a valori prossimi allo stato di sforzo originario per poi passare a sollecitazioni più elevate che conducono a risposte di tipo non lineare. Incrementando ulteriormente i valori di sollecitazione si può arrivare a definire il limite di resistenza a compressione della muratura, in base al superamento di un prestabilito limite di deformabilità’.

L’affidabilità delle due tecniche di misura è stata attentamente verificata in laboratorio attraverso una vasta serie di prove di taratura eseguite su campioni di muratura in mattoni e in pietra. Le prove di taratura, condotte in collaborazione con la Direzione Studi e Ricerche dell’ENEL, hanno permesso di studiare in dettaglio il comportamento dei diversi tipi di martinetti, sia in condizioni di carico uniformemente distribuito che in condizioni di carico eccentrico.

I principali vantaggi di questa tecnica di prova sono i seguenti:
- il campione di muratura oggetto della prova subisce disturbi di lievissima entità’;
- le dimensioni del campione sono sufficientemente ampie da garantire rappresentatività’ ai risultati;
- il ripristino delle condizioni originarie della parete e’ immediato in quanto l’asportazione di materiale riguarda solo strati di malta che possono essere facilmente reintegrati;
- la prova puo’ essere ripetuta sullo stesso campione in epoche
diverse allo scopo di valutare l’efficacia degli interventi di consolidamento;
- il martinetto piatto può essere utilizzato come cella di pressione durante gli interventi di consolidamento allo scopo di controllare eventuali variazioni dello stato di sollecitazione.

Oltre al Tempio di Romolo, numerosi edifici di grande interesse storico e monumentale sono stati di recente oggetto di campagne di prove con martinetti piatti per l’analisi delle condizioni statiche.

a) Murature in mattoni:
Palazzo della Ragione (Milano) - Chiostri di S. Eustorgio (Milano) - Chiesa di S. Eufemia (Verona) - Chiesa della Madonna del Prato (Gubbio) - Ex Collegio Massimo (Roma) - Libreria Classense (Ravenna).

b) Murature in pietra:
Torre di Pisa - Duomo di Orvieto - S. Maria di Collemaggio (L’Aquila) - S. Maria in Valle Porclaneta (Abruzzo) - Abbazia di S. Fruttuoso (Portofino) - Foro di Augusto (Roma) - chiesa della Madonna della Consolazione (Todi) - Chiesa di S. Francesco (Arezzo) - Porta S. Giacomo e Chiesa di S. Agostino (Bergamo).

3 RISULTATI DELLE INDAGINI ESEGUITE SULLE MURATURE DEL TEMPIO DI ROMOLO

La determinazione dello stato di tensione esistente in diversi punti della struttura e’ stata eseguita in corrispondenza di tre sezioni orizzontali:

A) alla base del monumento;
B) al di sopra delle volte seicentesche;
C) all’imposta della cupola.

Una prova e’ stata inoltre eseguita al di sotto delle volte seicentesche e due prove nella parte superiore della cupola.

In fig. 3.1 e’ riportata l’ubicazione dei punti di prova
con l’indicazione dei corrispondenti valori delle tensioni misurate. Si osserva che le murature alla base del monumento (sez. A) sono ovunque sottoposte ad un carico eccentrico verso l’esterno. Le sezioni non risultano parzializzate e i valori medi di sollecitazione risultano pari a 0.37 MPa sulla superficie interna e 0.65 MPa sulla superficie esterna. La tensione piu’ elevata e’ risultata comunque di 0.9 MPa.

Al di sotto delle volte seicentesche sembra che l’eccentricita’ del carico aumenti fino a scaricare il bordo interno della muratura. Appena al di sopra delle volte sicentesche (sez. B) lo stato tensionale diventa piu’ uniforme; permane perciò una lieve eccentricita’ del carico verso l’esterno con valori medi pari a 0.36 MPa sulla superficie interna e 0.50 sulla superficie esterna. All’imposta della cupola l’estradosso risulta in trazione mentre all’intradosso sono stati rilevati consistenti tensioni di compressione fino a 0.8 MPa (valore medio 0.71 MPa). Nella parte superiore della volta lo stato tensionale e’ risultato piu’ contenuto (forse grazie ad una minore eccentricita’ che non e’ stata pero’ accertata data l’impossibilita’ di eseguire prove sulla superficie di estradosso).

La prova con due martinetti paralleli per l’analisi delle caratteristiche di deformabilita’ della muratura e’ stata eseguita nei punti 1 e 4 della sez. A.

Sono stati effettuati cicli di carico e scarico a livelli di tensione gradualmente crescenti (0.6, 1.2 e 1.8 MPa) rilevando le deformazioni assiali e trasversali mediante estensimetro meccanico rimovibile di base 400 mm. Nella parte terminale di ciascuna prova la tensione e’ stata incrementata fino a 2.4 MPa al fine di studiare il comportamento deformativo dei campioni di muratura per livelli di carico decisamente superiori a quelli di esercizio. Nella fig. 3.2 sono riportati i diagrammi delle deformazioni assiali e trasversali in funzione della tensione applicata, con l’indicazione dei valori del modulo di deformazione misurati per diversi intervalli di tensione.

L’esame dei valori dei moduli di deformabilita’ permette di osservare che le caratteristiche meccaniche della muratura nel punto 1 risultano decisamente piu’ scadenti rispetto a quelle riscontrate nel punto 4. La muratura di quest’ultima zona mostra un comportamento elastico lineare fino al valore massimo di tensione raggiunto nel corso della prova (2.4 MPa) mentre nella zona 1, si osserva, gia’ per valori di sollecitazione pari a circa 1.2 MPa, un deciso superamento del comportamento lineare.
La diversità delle caratteristiche meccaniche rilevate nei due punti può essere imputata sia a differenze originarie delle murature (diversa esecuzione, epoca ecc.), sia a cause esterne (degrado, rimaneggiamenti, dissesti). Appare comunque evidente che lo studio del comportamento deformativo eseguito con la tecnica del martinetto piatto, oltre a fornire un prezioso aiuto allo strutturista che deve studiare le condizioni statiche del monumento, può fornire anche un contributo per un'analisi della storia di costruzione e di utilizzo dell'opera.

4 IL MODELLO NUMERICO

Per una prima verifica numerica dello stato tensionale globale delle murature è stato realizzato un modello numerico agli Elementi Finiti con comportamento lineare.

Considerando che le maggiori lesioni esistenti dividono la cupola in "spicchi", praticamente separati gli uni dagli altri e collegati soltanto in sommità intorno all'occhio che conclude la cupola, è stato definito un modello numerico solo di un settore pari ad un quarto di cerchio, ipotizzato rigidamente vincolato alla base e in sommità ma libero sui bordi laterali.

Nella figura 4.1 sono riportati due grafici del modello numerico deformato sotto l'azione del peso proprio.

5 ANALISI DEI RISULTATI NUMERICI

Da un primo confronto con la situazione deformata e lesionata esistente si rileva una notevole corrispondenza. Il modello infatti mostra chiaramente un ampliarsi delle lesioni, ipotizzate sui bordi laterali, ed una rotazione delle murature del tamburo verso l'esterno, in modo del tutto simile a quanto appare sul monumento.

Nella figura 5.1 è riportata una sezione con i valori delle tensioni verticali rilevati sul modello numerico, nella zona centrale, confrontati con i valori ottenuti speriment-
talmente con i martinetti piatti in punti simili. Il confronto mostra una notevole corrispondenza tra i dati.

In particolare, significativa per la stabilità della cupola, è la coincidente individuazione di zone tese sull'entradosso, nella zona immediatamente sopra l'imposta della cupola. I valori teorici delle tensioni massime di compressione in tale zona sono stati ottenuti ipotizzando una parzializzazione delle sezioni, corrispondente all'eccentricità della curva delle pressioni ricavata dal modello numerico.

Nonostante i buoni risultati, relativi all'analisi tensionale, ottenuti con il modello riportato, caratterizzato da un comportamento lineare del materiale, è attualmente in corso una più precisa modellazione che tiene conto non solo della presenza dei distacchi dovuti alle maggiori lesioni visibili, ma anche della limitata resistenza della muratura a trazione.

6 VALUTAZIONE DEI RISULTATI GENERALI DELLE INDAGINI

Le indagini fino ad oggi realizzate hanno permesso essenzialmente di ottenere tre risultati:

- la definizione delle caratteristiche meccaniche delle murature del tempio;
- l'interpretazione dello stato fessurativo esistente e delle sue cause;
- la valutazione dello stato tensionale.

Dall'analisi dei risultati il sistema di lesioni appare prodotto dal peso proprio delle murature unito all'attuale mancanza di supporti laterali, venuti meno in un primo momento per il crollo delle aule laterali, più recentemente per gli scavi operati per riportare alla luce i livelli originari del Foro.

Appaiono pertanto quanto mai opportune sia le ulteriori indagini in programma sia gli interventi di consolidamento e di risanamento previsti.
RIFERIMENTI BIBLIOGRAFICI

1/ P.P. Rossi: "Prove distruttive e non distruttive per la caratterizzazione meccanica dei materiali" ISMES Bollettino n. 130 (1980)
7/ P.P. Rossi: "Détermination experimentale des caractéristique mecanique des maconnerie" Restauration des Ouvrages et des Structures - Pont e Chaussees - Paris 1983

RINGRAZIAMENTI

Si ringrazia il Prof. A. Chiarugi, responsabile delle indagini statiche sul monumento, l'Arch. Martinez, della Soprintendenza Archeologica, che ne è stato il promotore, e il Prof. P.P. Fiore, autore, tra l'altro, dei rilievi del monumento utilizzati nelle illustrazioni della presente relazione.
DIDASCALIA DELLE FIGURE

Fig. 1.1 - Foto del fronte del monumento sulla Via Sacra.

Fig. 1.2 - Misura dello stato di sollecitazione sulla superficie esterna del Tempio (punto 5).

Fig. 2.1 - Prova con martinetto piatto per la misura dello stato di sollecitazione su murature in mattoni.

Fig. 2.2 - Prova con due martinetti piatti per la determinazione delle caratteristiche di deformabilità e resistenza.

Fig. 3.1 - Schema dei punti di prova. In parentesi sono indicati in MPa i valori della tensione misurati in ciascun punto.

Fig. 3.2 - Determinazione delle caratteristiche di deformabilità: diagrammi delle deformazioni assiali e trasversali in funzione della tensione applicata mediante i due martinetti piatti.

Fig. 4.1 - Grafici relativi al modello numerico deformato per effetto dei pesi propri.

Fig. 5.1 - Confronto tra gli stati tensionali teorici e sperimentali (valori in parentesi); curva delle pressioni ricavata dal modello numerico.